Functions

DALI-2

DALI 2The newer DALI-2 standard also covers switches, multi-sensors, bus power supplies, and control systems in addition to luminaires or ECGs. DALI-2 devices must be certified by the Digital Illumination Interface Alliance (DiiA) to be entitled to carry the DALI-2 logo.The DALI-2 certification promises significantly improved interoperability and additional functionality compared to older DALI systems on the market (version 1). LOYTEC recommends to use preferably DALI-2 certified devices. DALI and DALI-2 devices can be used simultaneously within one DALI channel.

EnOcean

EnoceanEnOcean is a radio protocol for wireless products in building automation and is defined in the international standard ISO/‌IEC 14543‑3‑10. Switches, like sensors with EnOcean technology just need little energy for sending short radio signals. The energy is mainly produced from piezoelectricity during switching (energy harvesting), the energy of solar panels, or Peltier elements. This energy is sufficient for a batteryless, hence maintenance free operation of the sender. The wireless protocol is geared to transfer information energy efficiently yet highly reliable. Frequency bands with regional differences are used. Europe: 868.3 MHz, US/Canada: 902 MHz (also 315 MHz), and Japan: 928 MHz.

For the integration of EnOcean radio switches and sensors into LOYTEC devices with EnOcean support, an EnOcean interface of the LOYTEC product family L-ENO is necessary. The L-ENO interface is simply connected via a USB cable. Also the energy for the EnOcean interface is supplied via USB likewise automatic detection.

KNX

KNXKNX is a communication protocol for building automation, which has been standardized internationally as ISO/‌IEC 14543-3 “Home Electronic Systems”. KNX is used in the field of home automation and commercial building automation as well. In a KNX network, sensors and actuators are assigned to a set of communication objects. A communication object represents a value of a given type, for instance a temperature, a switch state, or a set point. The communication objects communicate via group addresses. Sensors transmit a message containing the current value to all actuators, which are member of the same group. In order to make devices of different manufacturers interoperable, the communication objects use a pre-defined set of standardized data point types (DPTs). Network integration in a KNX system is accomplished by a vendor-independent installation tool based on a database (ETS – Engineering Tool Software).

LOYTEC devices are integrated into the KNX system by exporting the database of communication objects from the Engineering Tool Software (ETS4). ETS projects are imported by the LOYTEC Configurator tool. After the import of the KNX project, an overview of all available KNX data points is displayed. The desired data points for use can be chosen from this list. Later changes to the ETS project can be tracked and synchronized the same way. Once KNX data points have been integrated, they can be used for AST™ functions. The alarming (alarm management) is based on generic alarm servers. Scheduling of KNX data points is done using generic schedulers. Historic trend data of KNX data points can be logged by generic trend logs. The device communicates with the KNX system on KNX TP1 (twisted pair using an external KNX coupler) and on KNXnet/‌IP (Ethernet).

More details on the communication behavior in KNX systems can be found in the respective product manuals, which are available for download.

M-Bus

M-Bus (Meter-Bus)The M-Bus (Meter-Bus) is an established European standard (EN 13757-2, EN 13757-3) for remote meter reading. The M-Bus is a serial bus and employs a master/slave architecture. The M-Bus master can request data from several slaves (meters) on the network. The data transfer from master to slave is a voltage-modulated signal. The transfer from slave to master is a current-modulated signal. M-Bus devices can be bus-powered. The maximum number of nodes, which can be powered on the bus, depends on the M-Bus transceiver.

LOYTEC devices with M-Bus support are M-Bus masters and require an external transceiver for the integration of M-Bus meters. M-Bus data points can be created from an online network scan or offline by using M-Bus device templates, which have been previously created. The assignment of primary addresses to the M-Bus devices can be done in the Configurator tool. AST™ functions for alarming (alarm management), scheduling, and trending (historic data recording) also apply to M-Bus data points. Especially the historic data logging and cyclic polling of values is optimized for M-Bus meters.

More details on the integration of M-Bus devices can be found in the respective product manuals, which are available for download.

Modbus (TCP, RTU)

ModbusModbus is an open protocol and a de facto standard in the industry, which is based on a master/slave architecture. It was originally designed at the end of the 1970s for exchanging data between PLCs. Today, Modbus is still a widely used interface for integrating field devices into a system. Modbus devices communicate over a serial interface or over TCP/IP. Modbus TCP specifies communication over TCP/IP and is part of the IEC 61158 standard. Modbus devices use registers for data exchange, which are characterized by register type, address, and length. In addition, data type and byte order need to be specified in order to interpret Modbus data. The configuration is done by vendor-specific tools.

LOYTEC devices featuring a Modbus interface provide either Modbus TCP (Ethernet TCP/IP) or Modbus RTU (Remote Terminal Unit, based on RS-485) connectivity. Certain devices provide Modbus TCP and Modbus RTU at the same time. A Modbus interface can be operated either as a master or as a slave. The supported register types are: Read Discrete Inputs (2), Read Coils (1), Write Coils (5), Read Input Registers (4), Read Holding Registers (3), Write Holding Registers (6). For third-party integration, the vendor’s datasheet needs to be consulted in order to manually create a configuration. The Modbus technology does not offer a method for scanning this information online, as it is known from other technologies. For Modbus devices that are online, the manual configuration can however be tested via an online test function. By looking at the extracted values, the respective data points can then be configured accordingly. Modbus device templates can be created, which allows the re-use of Modbus configurations and reduces errors in configuration. AST™ functions for alarming (alarm management), scheduling, and trending (historic data recording) also apply to Modbus data points.

More details on the communication behavior in a Modbus network can be found in the respective product manuals, which are available for download.

MP-Bus

MP-Bus DefinitionThe MP-Bus controls HVAC actuators for dampers, regulator valves or VAV air volume controls. It is a master/slave bus developed by Belimo ®. There are no restrictions with respect to network topology. Permissible topologies include star, ring, tree and mixed configurations. The MP-Bus (multi point bus) consists of three conductors 24 V (AC or DC), GND and the MP data line.

OPC XML-DA

OPC XML-DAOPC is a de facto standard for interoperable communication in the automation industry, which is also often used for data exchange between management level and automation level in building automation. OPC is a set of different specifications and versions, which can be implemented independently of each other.

LOYTEC devices that support OPC have a built-in OPC server following the OPC XML-DA specification. When integrating the different communication technologies (CEA-709, BACnet, DALI, M-Bus, Modbus, KNX, etc.), OPC tags are automatically created without additional engineering effort and exposed via a Web services. The OPC server provides data access via Web services according to XML-DA, which are available over the same TCP port as the built-in web server. The OPC server exposes simple data points and complex AST™ functions as OPC tags for alarming (alarm management), scheduling, and trending (historic data recording). Since the OPC XML-DA standard does not specify corresponding tags for these functions, the OPC XML-DA server uses groups of OPC tags for exposing AST™ functions. Because Web services are built for being routed across the Internet, the built-in OPC XML-DA server uses basic authentication for protection against unauthorized write access. Authentication requires the operator user and the respective password.

The L-WEB System uses OPC XML-DA communication (Web services) for data exchange with LOYTEC devices. This allows for a hassle-free communication in the Intranet or Internet across firewalls and NAT routers. Also third-party applications such as SCADA systems can communicate as OPC XML-DA clients over the Intranet or Internet and access the built-in OPC server in a simple and secure way. The embedded OPC servers do not require extra PC hardware and can be distributed in the IP network.

More details on OPC communication can be found in the respective product manuals, which are available on download.

SMI

smi pictogram 60x60The Standard Motor Interface (SMI) is a bus protocol used to control SMI sunblind motors for shading. On closer examination, the SMI is a digital interface with the benefit to parallelize the connection of roller shutters and sun protection drives. Furthermore, the automation controller gets feedback from the drives and the possibility of flexible parameterization. This allows telegrams to be exchanged over the consistent interface, from the controller to the drive and vice versa. SMI drives from different manufacturers are compatible with each other. For drives that operate on mains voltage, the drive and controller are connected by a 5-core cable which both supplies power and transmits data. Distances of even up to 350 m between the controller and drive are possible. Up to 16 drives per SMI channel can be connected in parallel. In this way, the hardware expense is reduced significantly in comparison with today's conventional technology. Even when connected in parallel, the drive status can be queried by the sun protection controller.

The roller shutters and sun protection installations with SMI-drives can also be set up for operation without using a controller. The SMI drive has a setup mode through which drives can be activated using simple push buttons. The uniform interface is also available for low-voltage drives. This means that interior sun protection installations can also be controlled intelligently and accurately. Low-voltage drives can be recognized from the SMI LoVo symbol.

OPC UA

OPC UAThe OPC server on LOYTEC devices, which support security, also features the OPC UA binary protocol, that exposes the same OPC tags as the OPC XML-DA server. More details on OPC communication can be found in the respective product manuals, which are available on download.

CEA-709 Router Function

CEA-709 RouterThe CEA-709 router function allows the transparent connection of two LonMark channels in a LonMark System. One of the channels can be a LonMark IP-852 (Ethernet/IP) channel. LOYTEC devices featuring IP-852 routing have a built-in IP-852 configuration server to configure and manage all IP-852 members on the channel.

BACnet Router Function

BACnet RouterThe BACnet router function allows the transparent connection of one BACnet/IP channel and one BACnet MS/TP channel. In addition, the router function implements a BACnet Broadcast Management Device (BBMD) and features Foreign Device support. For MS/TP slave devices it acts as a slave proxy.

Remote Access

Remote AccessLOYTEC devices offer remote access functions, which differ depending on the device model. All device settings can be modified, data point values can be queried, and configuration parameters can be modified. Apart from this, backup and restore of the device configuration is available. The same applies to parameters. Access to AST™ functions for alarming (alarm management), scheduling, and trending (historic data recording) is also supported, including reading out alarm logs and trend logs from the device via file transfer. The devices offer various analysis functions and statistical data for troubleshooting the used communication protocols. Programmable LOYTEC devices also provide online test functions for developing application programs.

Remote Network Interface (RNI)

RNIThe Remote Network Interface (RNI) function is available, if the LOYTEC device is configured to operate on the TP/‌FT‑10 channel. In this mode, the LOYTEC device appears as a LOYTEC network interface and thus enables remote access to the TP/‌FT‑10 channel over an Ethernet/‌IP connection. The network interface can be used together with LNS-based tools such as NL220 or LonMaker, or as a native LOYTEC network interface. Furthermore, the RNI offers the “remote LPA” (LOYTEC Protocol Analyzer) feature for remote troubleshooting.

Wireless Local Area Network (WLAN)

Network SecurityWLAN refers to a local wireless radio network compliant to the common Standard IEEE 802.11. It extends all protocols of the wired Ethernet of corresponding LOYTEC devices to a wireless communication.

For network integration into a WLAN, the corresponding LOYTEC devices need to be connected with an L-WLAN interface via USB. The USB bus supplies the L-WLAN device with energy and enables an automatic detection. It is also possible to connect the LOYTEC device with an existing WLAN Access Point or create a WLAN Access Point.